Perron's formula
In mathematics, and more particularly in analytic number theory, Perron's formula is a formula due to Oskar Perron to calculate the sum of an arithmetic function, by means of an inverse Mellin transform.
Statement
Let [math]\displaystyle{ \{a(n)\} }[/math] be an arithmetic function, and let
- [math]\displaystyle{ g(s)=\sum_{n=1}^{\infty} \frac{a(n)}{n^{s}} }[/math]
be the corresponding Dirichlet series. Presume the Dirichlet series to be uniformly convergent for [math]\displaystyle{ \Re(s)\gt \sigma }[/math]. Then Perron's formula is
- [math]\displaystyle{ A(x) = {\sum_{n\le x}}' a(n) =\frac{1}{2\pi i}\int_{c-i\infty}^{c+i\infty} g(z)\frac{x^{z}}{z} \,dz. }[/math]
Here, the prime on the summation indicates that the last term of the sum must be multiplied by 1/2 when x is an integer. The integral is not a convergent Lebesgue integral; it is understood as the Cauchy principal value. The formula requires that c > 0, c > σ, and x > 0.
Proof
An easy sketch of the proof comes from taking Abel's sum formula
- [math]\displaystyle{ g(s)=\sum_{n=1}^{\infty} \frac{a(n)}{n^{s} }=s\int_{1}^{\infty} A(x)x^{-(s+1) } dx. }[/math]
This is nothing but a Laplace transform under the variable change [math]\displaystyle{ x = e^t. }[/math] Inverting it one gets Perron's formula.
Examples
Because of its general relationship to Dirichlet series, the formula is commonly applied to many number-theoretic sums. Thus, for example, one has the famous integral representation for the Riemann zeta function:
- [math]\displaystyle{ \zeta(s)=s\int_1^\infty \frac{\lfloor x\rfloor}{x^{s+1}}\,dx }[/math]
and a similar formula for Dirichlet L-functions:
- [math]\displaystyle{ L(s,\chi)=s\int_1^\infty \frac{A(x)}{x^{s+1}}\,dx }[/math]
where
- [math]\displaystyle{ A(x)=\sum_{n\le x} \chi(n) }[/math]
and [math]\displaystyle{ \chi(n) }[/math] is a Dirichlet character. Other examples appear in the articles on the Mertens function and the von Mangoldt function.
Generalizations
Perron's formula is just a special case of the Mellin discrete convolution
- [math]\displaystyle{ \sum_{n=1}^{\infty} a(n)f(n/x)= \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty}F(s)G(s)x^{s}ds }[/math]
where
- [math]\displaystyle{ G(s)= \sum_{n=1}^{\infty} \frac{a(n)}{n^{s}} }[/math]
and
- [math]\displaystyle{ F(s)= \int_{0}^{\infty}f(x)x^{s-1}dx }[/math]
the Mellin transform. The Perron formula is just the special case of the test function [math]\displaystyle{ f(1/x)=\theta (x-1), }[/math] for [math]\displaystyle{ \theta(x) }[/math] the Heaviside step function.
References
- Page 243 of Apostol, Tom M. (1976), Introduction to analytic number theory, Undergraduate Texts in Mathematics, New York-Heidelberg: Springer-Verlag, ISBN 978-0-387-90163-3
- Weisstein, Eric W.. "Perron's formula". http://mathworld.wolfram.com/PerronsFormula.html.
- Tenenbaum, Gérald (1995). Introduction to analytic and probabilistic number theory. Cambridge Studies in Advanced Mathematics. 46. Cambridge: Cambridge University Press. ISBN 0-521-41261-7.
Original source: https://en.wikipedia.org/wiki/Perron's formula.
Read more |